Monte-charge

Présentation du système :

- -Le monte-charge est un appareil élévateur à usage privatif qui permet de transporter des lourdes charges d'un niveau à un autre dans un bâtiment
- -Les monte charge répondent à de nombreux usages :
 - en milieux agro alimentaire.
 - en milieux pharmaceutiques.

- ...

- utilisent notamment des poste de chargement de sacs, de big bag, de fûts ou de conteneurs.
- -Un monte charge permet d'acheminer au bon niveau des charges palettisés ou conteneurisés, jusqu'à 1200 kg et jusqu'à 6 mètres de haut.
- -Liaision inter étage : on peut également créer des ascenseurs pour marchandises avec asservissement à différents étages.

Description de fonctionnement

- La montée et la descente du container s'effectue en deux vitesses : Lente et rapide.
- Une boite à deux boutons poussoirs « a » ; « b » et un commutateur « c » permettant la commande de façon à obtenir le fonctionnement suivant :

- Descente lente commandée par un contacteur KMDL.

- Montée rapide commandée par un contacteur KMMR.

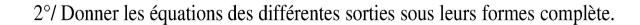
- Descente rapide commandée par un contacteur KMDR.

La commande du système se fait de la façon suivante :

<u>Premier cas</u>: Container plein « c » non actionné (c = 0) :

- L'action sur « a » entraîne la montée lente.
- L'action sur « b » entraîne la descente lente.
- L'action simultanée sur «a » et «b » entraîne la montée lente.

<u>Deuxième cas</u>: Container vide « c » actionné (c = 1) :


- L'action sur « a » entraîne la montée rapide.
- L'action sur « **b** » entraîne la descente rapide.
- L'action simultanée sur « a » et « b » entraîne la montée rapide.

Dans tous les cas si $\mathbf{a} = \mathbf{b} = \mathbf{0}$ entraîne l'arrêt du moteur.

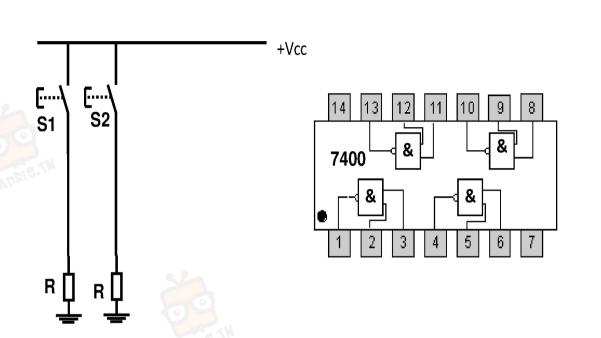
ETUDE DU SYSTEME COMBINATOIRE :

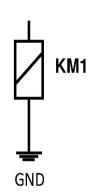
1°/ Établir la table de vérité.

Les va	riables d	'entrées	Le	es variabl	es de sor	ties		
c	b	a	KMML	KMDL	KMMR	KMDR		
0	0	0	0	0	0	0		
0	0	1	•••	•••	•••	•••		
О	1	О	•••	•••	•••	•••		
О	1	1	•••	•••	•••	•••		
1	0	0	•••	•••	•••	•••		
1	0	1	•••	•••	•••	•••		
1	1	О	•••	•••	•••	•••		
1	1	1	•••					

KMML=
KMDL=
KMMR=
KMDR=
3°/ Simplifier les équations des sorties par la méthode algébriques
KMML=
KMMR=

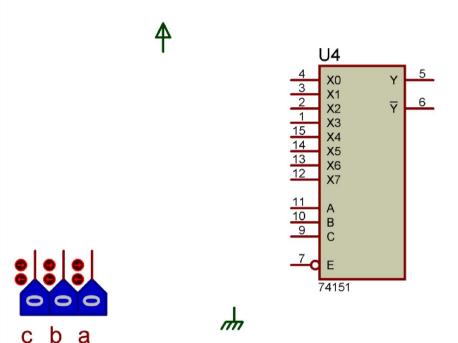
4°/ Simplifier les équations des sorties par la méthode graphiques

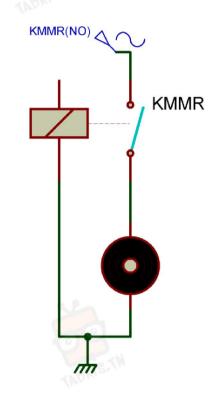

	ha	2	B:5	111-	
`	ba c	00	01	11	10
	0	•••	•••	•••	•••
	1	•••	•••	•••	•••

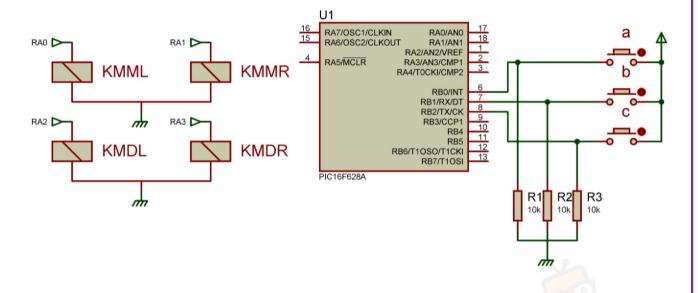

ba	00	01	11	10
0	•••	•••	•••	•••
1	•••	•••	•••	•••

KMML =

KMMR =.....

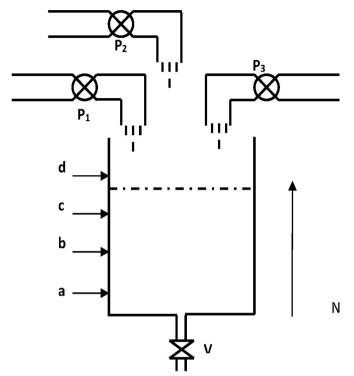

5°/ Écrire l'équation de KMML et KMMR avec les opérateurs NAND à deux entrées.
KMML=
KMMR=
••••••••••••••••••••••••••••••••••••••
6°/ Le moteur du monte charge est commandé par un contacteur KM1, l'équatio logique de commande est sous la forme : $\overline{KM1} = \overline{S1} \mid \overline{S2}$ -Compléter le schéma de câblage de circuit de commande de KM1 en
utilisant le circuit intégré 7400 sachant les broches de polarisation sont
: broche $N^{\circ}14$ et broche $N^{\circ}7$





Les va	riables d'	'entrées	Les variables de sorties											
c	b	a	KMML	KMDL	KMMR	KMDR								
0	0	O	0	0	0	0								
0	0	1	1	0	0	0								
0 N	1	О	0	1	О	О								
0	1	1	1	О	О	О								
1	0	O	0	0	0	0								
1	0	1	0	0	1	0								
1	1	О	О	О	О	1								
1	1	1	О	О	1	0								

8-En se référant au montage suivant compléter le programme qui traduit le fonctionnement de ce monte-charge en mikroC.


Le programme en mikroC :										
sbit	at porta.b0;sbit atRA1_bit;sbitat porta.b2;									
	;									
0	//mot clé et début									
TRISA	A=0x;TRISB=0x;//configuration.									
Port.	=0 ;//initialisation.									
	//boucle infinie.									
{										
••••••	TATE IS IL									
}										
}										

Système de remplissage

I / PRESENTATION DU SYSTÈME:

Un tel système est utilisé pour alimenter des conduits d'irrigation agricole avec un débit d'eau constant. La station de pompage est formée par :

- Trois pompes $(P_1, P_2, et P_3)$ qui alimentent un réservoir d'eau.
- Une électrovanne V pour vider le réservoir.
- Quatre capteurs (a, b, c, d) pour contrôler le niveau d'eau dans le réservoir.
- Les préactionneurs sont respectivement KM₁, KM₂, KM₃ et KA

II / FONCTIONNEMENT DU SYSTEME :

Pour assurer un débit constant on a choisi d'alimenter le réservoir avec trois pompes qui assurent l'approvisionnement du réservoir selon le nivaux de l'eau qu'il contient.

N: niveau d'eau

- Si
$$N > d$$

$$a = b = c = d = 1$$
 alors $P_1 = P_2 = P_3 = 0$ et $V = 1$

$$- \operatorname{Si} \underline{\mathbf{c}} < \mathbf{N} < \mathbf{d}$$

$$a = b = c = 1$$
 et $d = 0$ alors $P_1 = 1$; $P_2 = P_3 = 0$ et $V = 1$

$$- \operatorname{Si} \mathbf{b} < \mathbf{N} < \mathbf{c}$$

$$a = b = 1$$
 et $c = d = 0$ alors $P_1 = P_2 = 1$; $P_3 = 0$ et $V = 1$

$$a = 1$$
 et $b = c = d = 0$ alors $P_1 = P_2 = P_3 = 1$ et $V = 1$

$$a = b = c = d = 0$$
 alors $P_1 = P_2 = P_3 = 1$ et $V = 0$

Aucune autre combinaison n'est autorisée.

Système combinatoire :

PARTIE1:

1- On se référant au dossier technique, compléter la table de vérité suivante :

а	b	С	d	KM1	KM2	KM3	KMA
0	0	0	0				
0	0	0	1				
0	0	1	0	Ø	Ø	Ø	Ø
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0	***		• • • •	***
0	1	1	1	***	•••	•••	
1	0	0	0				
1	0	0	1	***	***		***
1	0	1	0				
1	0	1	1				
1	1	0	0	***		•••	***
1	1	0	1				
1	1	1	0				
1_	1	1	1				

Pour les combinaisons non autorisé on affectera le symbole « **Ø** »

2- Ecrire l'équation de

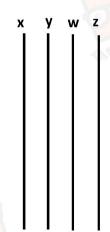
« KM2 » sous sa forme canonique complète

KM2 =	•••

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

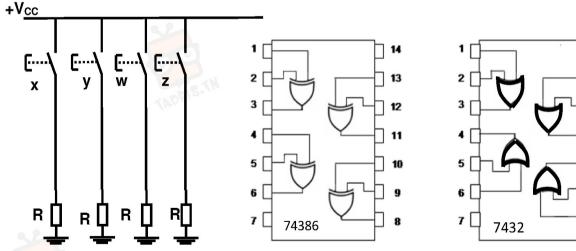
3- Montrer que $KM2 = c d \cdot (b + a)$	6- Simplifier par la méthode graj	phique les équations de KM1 ;	; KM3 et KA
4- Transformer l'équation de « KM 2 » à l'aide des fonctions NOR à deux	ab 00 01 11 10 00 00 00 01 00 00 00 00 00	a b 00 01 11 10 c d 00 01 11 10	ab 00 01 11 10 00 01 11 10
entrées : KM2=	KM1 =	KM3 =	KA =
	PARTIE2 : On donne l'équation suivante :		
5- Compléter le logigramme correspondant à l'équation de « KM 2» :	T=	$\overline{x}.\overline{y}.\overline{z}.\overline{w} + \overline{x}.y.z.\overline{w} + x.\overline{y}.\overline{z}.w +$	X.y.Z.W
a b c d	1- Montrer que T = (x ∘ w		
في دارك إتهنى على قراية إصغارك 99 www.Tadris.TN 🗾 55.635.666 🖸 26.222.159			

2- Donner l'équation de N a partir du tableau de Karnaugh:


χу	00	01	11	10
w Ż				
00	0	1	1	1
01	1	0	1	1
11	1	1	0	1
10	1	1	1	0

V=	

3- Montrer que l'équation de N s'écrit sous la forme suivante :


$$N=(x \oplus w)+(y \oplus z)$$

4- Compléter le logigramme correspondant à l'équation de « **T**» :

5- Représenter le logigramme de « N » en utilisant des opérateurs logiques « OU-EXCLUSIF »et

« OU » à deux entrées :

